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Abstract. An extension of the auxiliary problem principle to variational inequalities with
non-symmetric multi-valued operators in Hilbert spaces is studied. This extension concerns the
case that the operator is split into the sum of a single-valued operator ^, possessing a kind of
pseudo Dunn property, and a maximal monotone operator 4. The current auxiliary problem is

kconstructed by fixing ^ at the previous iterate, whereas 4 (or its single-valued approximation 4 )
kis considered at a variable point. Using auxiliary operators of the form + 1 x =h, with x . 0, thek k

standard for the auxiliary problem principle assumption of the strong convexity of the function h
can be weakened exploiting mutual properties of 4 and h. Convergence of the general scheme is
analyzed and some applications are sketched briefly.
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1. Introduction

The auxiliary problem principle (APP), originallly introduced by Cohen [1, 2] as a
general framework to analyze optimization algorithms of gradient and subgradient
types as well as decomposition algorithms, was extended later to different numerical
methods for solving variational inequalities. In the majority of the papers dedicated
to such extensions, the (k 1 1)-th auxiliary problem is constructed by applying the
operator of the variational inequality (here called main operator) to the k-th iterate.
The idea to take this operator (or some additive part of it) at a variable point leads to
a scheme which appears to be a generalization of proximal-like methods, too.

In order to illustrate this, let us consider the problem

find x [ X: 0 [ C(x) , (1.1)

with C a given multi-valued maximal monotone operator in a Hilbert space X. The
APP is taken in the form

1k11 k11 k k]find x [ X: 0 [ [V(x ) 2 V(x )] 1 C(x ) , (1.2)
ek
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with V : X → X an auxiliary operator, e . 0, and this iterative scheme can bek

modified as follows:

1k11 k11 k k11]find x [ X: 0 [ [V(x ) 2 V(x )] 1 C(x ) , (1.3)
ek

or

1k11 k11 k k k11]find x [ X: 0 [ [V(x ) 2 V(x )] 1 C (x ) 1 C (x ) , (1.4)1 2e

where e . 0 and C is decomposed into a sum of a single-valued operator C and a1

monotone operator C .2

Then, in case V 5 ( (( – identity operator), the following well-known methods
arise:

• inclusion (1.2) leads to

k11 k kx [ x 2 e C(x ) ,k

which is an analogon of the subgradient method;
• on using (1.3) we obtain

k11 21 kx 5 (( 1 e C) (x ) ,k

the proximal point method;
• (1.4) produces

k11 21 kx 5 (( 1 eC ) (1 2 eC )(x ) , (1.5)2 1

the splitting algorithm, suggested by Lions and Mercier [13] (see also Gabay
[6]) and Passty [19].

Obviously, the latter algorithm can be represented as

k k k k11 21 kz 5 x 2 eC (x ), x 5 (( 1 eC ) (z ) ,1 2

k11 kwhere x is calculated from z by means of the proximal mapping. Tseng [26, 27]
has used method (1.5) (with a variable e) as a basic process to investigate
convergence of several known but also new splitting methods for solving variational
inequalities with separability properties as well as for related convex optimization
problems with linear constraints and for linear complementarity problems.

In the present paper the APP is studied for variational inequalities of the type

(P) find x* [ K: k^(x*) 1 4(x*), x 2 x*l > 0 ;x [ K ,

with K a convex closed subset of a Hilbert space (X, i ? i), ^ a single-valued
X 9operator from X into the dual space X9 and 4 : X → 2 a maximal monotone (in

general, multi-valued) operator; k?, ?l denotes the duality pairing between X and X9.
The here suggested auxiliary problems have the form:
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k k11(P ) find x [ K:
k k k11 k k11 k kk^(x ) 1 4 (x ) 1 + (x ) 2 + (x )

k11 k k11
1 x (=h(x ) 2=h(x )), x 2 x l > 0 ;x [ K ,k

k´where h : X → R is a convex Gateaux-differentiable functional, 4 : X → X9 is a
kmonotone operator approximating 4, + : X → X9 is a monotone operator and x isk

ka positive scalar. In this case, + 1 x =h corresponds to the customary notion of ank

auxiliary operator. In the sequel, we refer to this scheme as the proximal auxiliary
problem method (PAP-method).

For the exact conditions which are supposed to be valid for both problems (P) and
k(P ) see the Assumptions 1 and 2 below.
Applying for the sources of the PAP-method, we begin with a version of the APP

´for convex optimization problems, where a linearization of the Gateaux-differenti-
able term J of an objective functional J 5 J 1 J is used. This was already studied1 1 2

kin the mentioned paper [1]. Taking this partial linearization, the term k=J (x ), ? 21
kx l 1 J (?) is inserted into the objective functional of the (k 1 1)-th auxiliary2

problem. Such an approach is of special interest for constructing decomposition
methods. In fact, if the problem minhJ (x) : x [ Kj splits up into independent2

subproblems, then the mentioned linearization permits to provide the same splitting
in the framework of the APP for the original problem minhJ(x) : x [ Kj, i.e., the
corresponding auxiliary problems can be split up, too.

The general scheme oriented to decomposition methods for variational
inequalities of the form

find x* [ X: kC(x*), x 2 x*l 1 f(x) 2 f(x*) > 0 , ;x [ X , (1.6)

with C a single-valued monotone operator and f a convex, lower semi-continuous
(lsc) and additive w.r.t. a Cartesian factorization of the space X functional, has been
developed in the paper of Makler-Scheimberg et al. [14]. Here the APP is combined
with the approximation of the functional f on the basis of the concept of the
Mosco-convergence. An extension of this scheme (without accentuating decomposi-
tion methods), described by Salmon et al. [24], is connected with a relaxation of the
monotonicity condition for C and with the use of a wider class of auxiliary
operators (as distinct from [14], these operators may be non-symmetric). The
auxiliary problems in [24] can be written as

k11find x [ K:
k k k11 k k k k11 k k k11kC(x ) 1 + (x ) 2 + (x ) 1 x (=h (x ) 2=h (x )), x 2 x lk

k k k11
1 f (x) 2 f (x ) > 0 ;x [ K ,

k k kand the conditions concerning + , h and f made there permit to cover a lot of
earlier versions of the APP and special algorithms.

Our PAP-method may be considered as a perturbed version of the method studied
nby Zhu and Marcotte [28] for the case where X 5 R and ^ 1 4 is a continuous
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k k koperator: the auxiliary problems in [28] correspond to (P ) with 4 5 4, + 5 +,
x 5 x, under stronger assumptions w.r.t. h and ^ 2 +.k

The paper of Renaud and Cohen [21] should also be mentioned, where for
Problem (1.1) the APP is studied in the form

1k11 k11 k k11]find x [ X: 0 [ [J(x ) 2 J(x )] 1 C(x ) , (1.7)
e

with a single-valued (in general, non-symmetric) auxiliary operator J 5 J 1 eJ .1 2

Here, J is supposed to be the gradient of a strongly convex functional, and1

observing the following relation between C and J :2

2
'g . 0: kc(x) 2 c( y), x 2 yl > g iJ (x) 2 J ( y)i ,0 0 2 2

;c(x) [ C(x), c( y) [ C( y) , ;x, y [ dom C ,

the operator J may be hemicontinuous only. Note that the auxiliary problem (1.4)2

is equivalent to (1.7) setting J 5 V 2 eC .1

In [21] the general convergence results for method (1.7) have been also adapted
to prove convergence of a new algorithm for solving saddle-point problems with
convex–concave functions on the product of convex sets. Depending on the
decomposition of the related maximal monotone operator, the Arrow–Hurwicz
algorithm and the proximal point method can be obtained as particular cases.

The PAP-method studied in the present paper has the following peculiarities:
• as distinct from [24, 14], the operator 4 is supposed to be not necessarily the

subdifferential of a convex functional (note that the variational inequality (1.6)
corresponds to Problem (P) with 4 5 f );

• as distinct from [21], the main operator ^ 1 4 is not necessarily monotone, an
approximation of 4 is included, and the auxiliary operator may vary after each
step.

Besides, we weaken the standard (for the APP) assumption on strong convexity of
kthe auxiliary function h in the Problems (P ): h is supposed to be convex and the

koperators 4 1 =h have to be strongly monotone with a common modulus for all k.
Note that the conditions joining the main and auxiliary operators are not

completely comparable in the schemes suggested here and in [14, 21, 24].
The paper is organized as follows: In Section 2 we start with the full description

of the problem under consideration and discuss some assumptions. The conditions
w.r.t. the successive approximation of the problem and the convergence analysis of
the PAP-method are described in Section 3, and Section 4 contains some applica-
tions.

2. Proximal auxiliary problem method

We consider the variational inequality (P) under the following basic assumptions.
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Assumption 1
(i) K , X is a non-empty, convex set;

X 9(ii) 4 : X → 2 is a maximal monotone operator, D(4 ) > K is a convex set, and

4( y) if y [ K
4 : y →HK 5 otherwise

is locally hemi-bounded at each point of D(4 ) > K;
(iii) the operator 4 1 1 is maximal monotone, whereK

hz [ X9 : kz, y 2 xl > 0 ;x [ Kj if y [ K
1 : y →HK 5 otherwise

is the normality operator for K;
(iv) ^ : X → X9 is a single-valued compact on K operator;
(v) given a family h+ j, + : X → X9, of monotone on D(4 ) > K operatorsy y

parameterized by y [ K; if

k^(x) 1 q(x), y 2 xl > 0

holds for some x, y [ D(4 ) > K and some q(x) [ 4(x), then

k^( y) 2 + ( y) 1 + (x) 1 q(x), y 2 xly y

2
> g i^( y) 2 + ( y) 2 ^(x) 1 + (x)iy y X 9

is valid, where g . 0 is independent of x, y;
(vi) Problem (P) is solvable.

Referring in the sequel to the separate conditions described in Assumptions 1 and 2
(below), we write (1-i), (1-ii), . . . and (2-i), (2-ii), . . . , respectively.

Let us discuss some mentioned notations and conditions.

• By definition, an element x* [ K is a solution of Problem (P) if the inequality

kF(x*) 1 q*(x*), x 2 x*l > 0 ;x [ K

is valid for some q*(x*) [ 4(x*). In the sequel, the notation q*( ? ) taken to
diverse elements of the solution set X* has the same meaning.

0• Local hemi-boundedness of an operator } at a point x [ D(} ) means: for
0 0 0each x [ D(} ), x ± x , there exists a number t (x , x) . 0 such that x 1 t(x 20

0 0x ) [ D(} ) holds for 0 < t < t (x , x) and the set0

0 0< }(x 1 t(x 2 x )) is bounded in X9 .
00,t<t (x ,x)0

Here we use a weakened notion of local hemi-boundedness: the standard notion
0 0supposes boundedness of < }(x 1 t(x 2 x )). The simple example00<t<t (x ,x)0
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2 2 2} 5 1 , where C 5 hx [ R : x 1 x < 1j, shows that this relaxation may beC 1 2

very essential.
• With 4 a maximal monotone operator and K a convex closed set, the operator

4 1 1 is maximal monotone if, for instance, intD(4 ) > K ± 5 or 4 is locallyK
1bounded at some x [ K > clD(4 ) (see [22]).

• Assumption (1-v) is not so strange as it seems at the first glance. For instance,
(1-v) is certainly fulfilled if for each y [ K the operator ^ 2 + possesses they

Dunn property (is co-coercive):

'g . 0: k^(x) 2 + (x) 2 ^(v) 1 + (v), x 2 vly y

2
> g i^(x) 2 + (x) 2 ^(v) 1 + (v)i ;x, v [ K ,y y X 9

which is a rather standard hypothesis for the APP. On the other hand, the
simple example

1 2X 5 R , ^ : x → x , 4 : x → x 1 4, K 5 [21, 1] and + ; 0y

illustrates the situation that (1-v) is fulfilled, although the operator ^ 2 + doesy

not possess the Dunn property and even not the following weaker pseudo Dunn
property:

2
'g . 0: k^(v) 2 + (v), v 2 xl > g i^(v) 2 + (v) 2 ^(x) 1 + (x)i1 y 1 y y X 9

holds, whenever

k^(x) 2 + (x), v 2 xl > 0 for some x, v [ K .y

• If the operator ^ is monotone and hemicontinuous, Assumption (1-iv) can be
weakened: instead of the compactness of ^ it suffices that ^ is bounded on K
(i.e., ^ carries bounded subsets of K into bounded subsets of X9). This change
causes only minor modifications of the proofs of Lemma 3 and Theorem 1
below.

Now, the method suggested reads as follows:

0Proximal auxiliary problem method (PAP-method). Starting with x [ K, the
k ksequence hx j is defined by solving successively the auxiliary problems (P ),

kk 5 0, 1, . . . , where + 5 + u .ky y5x

3. Convergence analysis

We study the convergence of the PAP-method, using Assumption 1 and the
kfollowing conditions w.r.t. the data of the auxiliary problems (P ).

1 Local boundedness of 4 at x means that 4 carries some neighborhood x into a bounded set.
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Assumption 2
(i) The operators + , y [ K, are monotone and Lipschitz continuous on K,y

with a common Lipschitz constant l ;+

(ii) for a given monotone operator & : X → X9 the inequality

h( y) 2 h(x) 2 k=h(x), y 2 xl > k&( y) 2 &(x), y 2 xl ;x, y [ K

is satisfied;
(iii) the mapping =h is Lipschitz continuous on K, with a Lipschitz constant l ;h

k(iv) 4 are single-valued operators and

k k kk4 (x) 2 4 ( y), x 2 yl > k@(x 2 y), x 2 yl ;x, y [ K > D(4 ) ,

where @ : X → X9 is a given linear continuous and monotone operator with
the symmetry property k@x, yl 5 k@y, xl;

˜(v) with given constants x . 0, m . 0, the inequality

1 2˜] x k@(x 2 y), x 2 yl 1 k&(x) 2 &( y), x 2 yl > mix 2 yi2

is valid for all x, y [ K;
](vi) for the regularization parameters it holds 0 ,x < x < x <x , ` ;k;k k11]k(vii) for all k and y [ K, the operators 4 1 + 1 1 1 x =h are maximaly K k

monotone;
k k k(viii) for each w [ D(4 ) > K, there exists a sequence hw j, w [ D(4 ) > K,

such that

k k klim iw 2 wi 5 0, lim i4 (w ) 2 q(w)i 5 0 ,X 9
k→` k→`

kwith q(w) [ 4(w) (in general, q(w) depends on hw j);
(ix) for some solution x* of Problem (P) there exist a constant a . 1 and a

k k ksequence hw j, w [ D(4 ) > K, such that

a k a k klim k iw 2 x*i 5 0 , lim k i4 (w ) 2 q*(x*)i 5 0 .X 9
k→` k→`

Under (1-i), (2-i)–(2-iii), a condition guaranteeing that (2-vii) is valid is that each
k koperator 4 is maximal monotone and locally bounded at some x [ clD(4 ) > K

(this follows from the Theorems 1 and 3 in [22]). The assumptions (2-viii), (2-ix),
concerning the successive approximation of the operator 4, are closely related to
Mosco’s conditions [15] for the approximation of variational inequalities by using
the Browder–Tichonov regularization.

We start the convergence analysis with some preliminary results. As usual, the
symbol © denotes weak convergence.

X 9LEMMA 1. Let C , X be a convex closed set, the operators ! : X → 2 , ! 1 10 0 C

be maximal monotone and D(! ) > C be a convex set. Moreover, assume that the0

operator
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! (v) if v [ C0! : v →HC 5 otherwise

is locally hemi-bounded at each point v [ D(! ) > C and that, for some0

u [ D(! ) > C and each v [ D(! ) > C, there exists h(v) [ ! (v) satisfying0 0 0

kh(v), v 2 ul > 0 . (3.1)

Then, with some h [ ! (u), the inequality0

kh, v 2 ul > 0 (3.2)

holds for all v [ C.
Proof. In view of the maximal monotonicity of ! and ! 1 1 , the operators0 0 C

! : v → ! (v) 1 ((v 2 u) and ! 5 ! 1 1 (with ( : X → X9 a canonical iso-0 1 C

metry) are also maximal monotone. Moreover, they are strongly monotone.
Therefore, there exists w [ D(! ) > C such that 0 [ !(w) 1 1 (w), and due to the0 C

definition of the normality operator, this yields

kh(w), v 2 wl > 0 ;v [ C , (3.3)

with some h(w) [ !(w).
If w 5 u, then, of course, h(w) [ ! (w), hence, the conclusion of the lemma is0

valid. Otherwise, we use the relation
]kh(v), v 2 ul > 0 ;v [ D(! ) > C , (3.4)0

]which follows from (3.1) taking h(v) 5h(v) 1 ((v 2 u) [ !(v).
Let w 5 u 1 l(w 2 u) for l [ (0, 1]. Obviously, w [ D(! ) > C, and accordingl l 0

]to (3.4) there exists h(w ) [ !(w ) ensuringl l

]kh(w ), w 2 ul > 0 .l

]Because the operator ! is locally hemi-bounded at u, the set hh(w ) : l [ (0, l ]jC l 0

is bounded in V 9 for a sufficiently small l . 0. Hence, if l tends to 0 in an0
]appropriate manner, the corresponding sequence hh(w )j converges weakly in V 9 tol

]some h. Taking into account that lim iw 2 ui 5 0 and that ! is maximall→0 l
]monotone, one can conclude that h [ !(u) and

] ]0 < limkh(w ), w 2 ul 5 kh, w 2 ul .l

Combining this inequality and inequality (3.3) given with v 5 u, we obtain

]kh 2h(w), u 2 wl < 0 ,

but that contradicts the strong monotonicity of !. h

REMARK 1. The Assumptions (2-ii), (2-iv)–(2-vi) provide strong monotonicity of
kthe operator 4 1 x =h, and together with (1-i), (2-i), this yields strong monotonici-k

k kty of 4 1 + 1 1 1 x =h. Moreover, according to (2-vii), the operatorK k
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k k k4 1 + 1 1 1 x =h is maximal monotone. Hence, for each k, Problem (P ) isK k

uniquely solvable.

With x* [ X*, q*(x*) as in (2-ix), define

k ˜G (x*, x) 5 x k@(x 2 x*), x 2 x*l 1 h(x*) 2 h(x) 2 k=h(x), x* 2 xl
1
]1 k^(x*) 1 q*(x*), x 2 x*l . (3.5)
xk

For x [ K, under (2-ii), (2-iv)–(2-vi) it holds

k 2 k11 k
G (x*, x) > mix* 2 xi and G (x*, x) < G (x*, x) . (3.6)

kThe sequence hG j plays the role of a Ljapunov function in the further analysis.

LEMMA 2. Let the Assumptions (1-i), (1-v), (1-vi) and (2-i)–(2-vii), (2-ix) be
fulfilled and

1
˜ ˜]] ,x , 2xx , 1. (3.7)4gm ]

kThen the sequence hx j, generated by the PAP-method is bounded, for the iterates it
k11 k k kholds lim ix 2 x i 5 0 and the sequence hG (x*, x )j converges.k→`

This statement can be proved by modifying the proof of Theorem 2.1 in [24], and
due to the rather technical character of the modification, the proof of Lemma 2 is
given in the Appendix.

LEMMA 3. Let the Assumptions (1-i)–(1-iv), 1-vi) and (2-i), (2-iii), (2-iv), (2-viii)
k]be fulfilled, and 0 , x <x holds for all k. Moreover, let the sequence hx jk

k11 kgenerated by the PAP-method be bounded, and lim ix 2 x i 5 0. Then eachk→`
kweak limit point of hx j is a solution of Problem (P).

k k]Proof. Let x be an arbitrary weak limit point of hx j and let hx j convergek[K
k11 k k11] ]weakly to x. Since lim ix 2 x i 5 0, one gets x ©x if k [ K, k → `.k→`

kAccording to (2-viii), for each y [ D(4 ) > K one can choose a sequence hy j,
k k ky [ D(4 ) > K such that lim iy 2 yi 5 0, andk→`

k klim i4 ( y ) 2 q( y)i 5 0 (3.8)X 9
k→`

k11is valid with some q( y) [ 4( y). By definition of x , we obtain

k k k11 k k11 k kk^(x ) 1 4 (x ) 1 + (x ) 2 + (x )
k11 k k k11

1 x (=h(x ) 2=h(x )), y 2 x l > 0 ,k

kand the monotonicity of 4 (see (2-iv)) leads to
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k k k k k11 k kk^(x ) 1 4 ( y ) 1 + (x ) 2 + (x )
k11 k k k11

1 x (=h(x ) 2=h(x )), y 2 x l > 0 , (3.9)k

Passing to the limit for k [ K in (3.9), in view of
k k11 k11 k]lim iy 2 yi 5 0 , x ©x (k [ K), lim ix 2 x i 5 0 ,

k→` k→`

]as well as 0 , x <x, inequality (3.8) and the conditions (1-iv), (2-i), (2-iii), wek

obtain
] ]k^(x) 1 q( y), y 2x) > 0 .

]Moreover, due to (1-ii), (1-iii), the operators 4 : y → ^(x) 1 4( y) and 4 1 1 are0 0 K

maximal monotone, and the operator

4 ( y) if y [ K04 : y →HK 5 otherwise
]is locally hemi-bounded at each point of K. Thus, applying Lemma 1 with u 5x,

C 5 K and ! 5 4 , we obtain0 0

] ] ]k^(x) 1 q(x), y 2xl > 0 ;y [ K ,

] ] ]where q(x) [ 4(x). Hence, x is a solution of (P). h

REMARK 2. If we suppose instead of (1-iv) that the operator ^ is monotone and
hemicontinuous on X and that ^ is bounded on K, then from (3.9) and

k k k11 k k k k k k11k^(x ), y 2 x l < k^( y), y 2 x l 1 k^(x ), y 2 yl 1 k^(x ), x 2 x l

one gets
]k^( y) 1 q( y), y 2xl > 0 ;y [ D(4 ) > K ,

with q( y) as in (3.8).
The operators ^ 1 4 and ^ 1 4 1 1 are maximal monotone in this case andK

the operator

^( y) 1 4( y) if y [ K
y →H5 otherwise

is locally hemi-bounded at each point of K. Thus, Lemma 1 can be applied, proving
]that x solves Problem (P).

THEOREM 1. Let the Assumptions 1 and 2 and condition (3.7) be fulfilled. Then
the following conclusions are true:

k k(i) Problem (P ) is uniquely solvable for each k, the sequence hx j generated by
kthe PAP-method is bounded, and each weak limit point of hx j is a solution of

Problem (P);
(ii) if, in addition, (2-ix) with some a . 1 is valid for each x [ X* and
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k k kz ©z in X, z [ K ⇒ =h(z )©=h(z) in X9 , (3.10)

kthen the whole sequence hx j converges weakly to a solution x* of Problem
(P);

(iii) if, moreover,

k klim k&(x ) 2 &(x*), x 2 x*l 5 0 (3.11)
k→`

kholds with x* as in (ii), then hx j converges strongly to x*.

Proof. Conclusion (i) follows immediately from the Lemmata 2, 3 and Remark 1.
k kTo prove (ii), suppose that hx j , hx j are two subsequences convergingk[K k[K1 2] ]˜ ˜weakly to x, x, respectively. Then, according to Lemma 3, x, x belong to X*, and

because (2-ix) is valid for each x [ X*, Lemma 2 ensures that the sequences
k k k k] ˜hG (x, x )j , hG (x, x )j are convergent.k[N k[N

k ]By definition of G and with regard to x [ X*, the symmetry of the operator @
and (2-ii), (2-v), we obtain for x [ K

k k] ˜G (x, x) 2 G (x, x)
] ] ]˜ ˜ ˜ ˜ ˜5 (h(x) 2 h(x ) 2 k=h(x ), x 2 x l) 1 k=h(x ) 2=h(x), x 2 x l
1 ] ] ]˜]1 k^(x) 1 q*(x), x 2xl
xk

1 ] ] ˜ ˜ ˜]1 k^(x) 1 q*(x) 2 ^(x ) 2 q*(x ), x 2 x l
xk

] ] ]˜ ˜ ˜ ˜ ˜ ˜1 x k@(x 2 x ), x 2 x l 1 2x k@(x 2 x ), x 2 xl
2] ]˜ ˜ ˜> mix 2 x i 1 k=h(x ) 2=h(x), x 2 x l

1 ] ] ˜ ˜ ˜]1 k^(x) 1 q*(x) 2 ^(x ) 2 q*(x ), x 2 x l
xk

]˜ ˜ ˜1 2x k@(x 2 x ), x 2 xl . (3.12)

kInserting x 5 x in (3.12) and passing to the limit for k [ K , one can conclude from2

(3.10) and (3.12) that

2] ]˜ ˜g 2 g > mix 2 x i ,

k k k k] ] ˜ ˜where g 5 lim G (x, x ), g 5 lim G (x, x ). Obviously, in the same way thek→` k→`

‘symmetric’ inequality

2] ]˜ ˜g 2g > mix 2 x i
] ˜can be concluded, and therefore x 5 x is valid, proving the uniqueness of the weak

klimit point for hx j.
Denoting this limit point by x*, now we assume additionally that relation (3.11) is

kfulfilled. With hw j chosen according to (2-ix), from (2-iv) one gets
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k11 k11k@(x 2 x*), x 2 x*l
k11 k k11 k k k11

5 k@(x 2 w ), x 2 w l 2 k@(x* 2 w ), x 2 x*l
k11 k k

2 k@(x 2 w ), x* 2 w l
k k11 k k k11 k k11 k

< k4 (x ) 2 4 (w ), x 2 w l 2 k@(x 2 x*), x* 2 w l
k11 k k

2 k@(x 2 w ), x* 2 w l . (3.13)

k k11 k11 k kTo estimate the term k4 (x ), x 2 w l, we use Problem (P ). Together with
(3.13) this gives

k11 k11 k k k k11k@(x 2 x*), x 2 x*l < k4 (w ) 2 q*(x*), w 2 x l
k k11

1 kq*(x*), w 2 x*l 1 kq*(x*), x* 2 x l
k11 k k k11

1 x k=h(x ) 2=h(x ), w 2 x lk

k k k11
1 k^(x ) 2 ^(x*), w 2 x l

k k11 k k k k11 k
1 k+ (x ) 2 + (x ), w 2 x l 1 k^(x*), w 2 x*l

k11 k k11 k
1 k^(x*), x* 2 x l 1 k@x* 1 @w 2 2@x , x* 2 w l (3.14)

Now, using (2-ix), (1-iv), (2-iii), (2-i), (2-iv), and taking into account the
k k k k11boundedness of hx j and x ©x*, ix 2 x i → 0, the relation

k11 k11lim k@(x 2 x*), x 2 x*l 5 0
k→`

can be deduced from (3.14). Together with (3.11) and (2-v) this ensures conclusion
(iii). h

Replacing Assumption (1-iv) as mentioned in Remark 2, the modification in the
kproof of Theorem 1 is connected only with the estimation of the term k^(x ) 2

k k11^(x*), w 2 x l. Due to the monotonicity of ^, we obtain

k k k11k^(x ) 2 ^(x*), w 2 x l
k k k k11 k k

< k^(x ) 2 ^(x*), w 2 x* 1 x 2 x l 1 k^(x ) 2 ^(x*), x* 2 x l
k k k k11

< k^(x ) 2 ^(x*), w 2 x* 1 x 2 x l
k k11and the boundedness of ^ together with (2-ix) and ix 2 x i → 0 ensure

] k k k11lim k^(x ) 2 ^(x*), w 2 x l < 0 .
k→`

REMARK 3. Obviously, the conditions (3.7), used in Lemma 2 and also in
˜Theorem 1, are compatible if and only if 2gm > x. But, they are certainly

compatible, for instance, if the regularizing functional h is strongly convex. Then,
(2-ii) can be satisfied with a strongly monotone operator &, and assuming m is the

˜modulus of the strong monotonicity, in (2-v) an arbitrary small x is appropriate. In
case ^ is monotone and we deal with proximal-like methods, which correspond
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k k k: : :formally to the PAP-method by setting 4 5 4 1 ^, ^ 5 0, + 5 0, condition
˜(1-v) is valid for arbitrary large g, and hence, 2mg > x can be fulfilled, too. This

kind of proximal-like methods with weak regularization and regularization on a
subspace have been developed in [9–11] for solving problems in elasticity theory
and optimal control, and in [8] for abstract variational inequalities with non-
symmetric, multi-valued and monotone operators.

˜In general, one should choose the constants x and m such that (2-v) is satisfied
˜and the ratio x /m is as small as possible.

If Assumptions 1 and (2-i), (2-viii), (2-ix) (for all x [ X*) are fulfilled, the
k koperators 4 1 + 1 1 are maximal monotone and 4 are strongly monotone ony K

K with a common modulus m , and if 2gm > 1, then the iterates of the PAP-method1 1

applied with h ; 0 converge strongly to a solution of Problem (P).

To apply this analysis in the case when the auxiliary problems do not include an
approximation of the operator 4 (see, for instance [4, 21]), one has to modify

kProblem (P ) and Assumption 2 as follows:

k11• the point x [ K is defined such that

k k11 k k11 k kk^(x ) 1 q 1 + (x ) 2 + (x )
k11 k k11

1 x (=h(x ) 2=h(x )), x 2 x l > 0 ;x [ K (3.15)k

k11 k11is valid with some q [ 4(x );
k• in (2-iv) the operator 4 is replaced by 4, and the inequality

kq(x) 2 q( y), x 2 yl > k@(x 2 y), x 2 yl

has to be fulfilled for all x, y [ D(4 ) > K and all q(x) [ 4(x), q( y) [ 4( y);
k• in (2-vii) 4 is replaced by 4 ;

• the conditions (2-viii) and (2-ix) are skipped.

THEOREM 2. Lemmata 2, 3, and Theorem 1 remain true under the modifications
described above.

kThe proof of Lemma 2 remains true in this case if we take w 5 x* and replace
k k k k11 k114 (w ) by q*(x*) and 4 (x ) by q .

kIn the proof of Lemma 3 one has only to take y ; y and to substitute an arbitrary
k kq( y) [ 4( y) for 4 ( y ). The proof of Theorem 1 remains true completely.

4. Applications

We start with some observations concerning the application of the PAP-method to
different types of variational inequalities.

For the variational inequality
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˜(P ) find x* [ X: k^(x*) 1 4(x*), x 2 x*l 1 f(x) 2 f(x*) > 0, ;x [ X ,
]

where f : X →R ; R < h1`j is a convex lsc functional and the operators 4 1 f
(instead of 4 ) and ^ satisfy Assumption 1 with K 5 dom f, the studied scheme can

kbe directly applied if we construct the auxiliary problems (P ) being caused from the
˜equivalent formulation for (P ):

find x* [ dom f : k^(x*) 1 4(x*) 1 f(x*), x 2 x*l > 0 ;x [ dom f .

However, one can deal with more convenient requirements for the approximation of
f (see [24]) if the auxiliary problems have the form

k k11˜(P ) find x [ X:
k k k11 k k11 k kk^(x ) 1 4 (x ) 1 + (x ) 2 + (x )

k11 k k11
1 x (=h(x ) 2=h(x )), x 2 x lk

k k k11
1 f (x) 2 f (x ) > 0 ;x [ X ,

]kwhere f : X →R is a convex lsc functional. In the case, compiling the convergence
analysis in [24] and in this paper, Theorem 1 can be proved under the following
modifications concerning the Assumptions 1 and 2:
everywhere K is replaced by dom f and 1 by f;K

(1-v)9: for y [ dom f, + is monotone on D(4 ) > dom f, andy

k^( y) 2 + ( y) 1 + (x) 1 q(x), y 2 xl 1 f( y) 2 f(x)y y

2
> g i^( y) 2 + ( y) 2 ^(x) 1 + (x)i (g . 0 2 const.)y y X 9

holds true whenever

k^(x) 1 q(x), y 2 xl 1 f( y) 2 f(x) > 0 with some q(x) [ 4(x);

k k k k k(2-iv)9: k4 (x) 2 4 ( y), x 2 yl 1 f (x) 2 f ( y) 2 kg ( y), x 2 yl >
k k k kk@(x 2 y), x 2 yl, ;x, y [ D(4 ) > D(f ), ;g ( y) [ f ( y),

with @ as in (2-iv);
k k(2-viii)9: f > f and for each w [ D(4 ) > dom f there exists a sequence hw j,
k k kw [ D(4 ) > dom f , such that

k k k k klim iw 2 wi 5 0 lim f (w ) 5 f(w), lim i4 (w ) 2 q(w)i 5 0,X 9
k→` k→` k→`

with q(w) [ 4(w);
˜(2-ix)9: for some solution x* of problem (P ) there exist a constant a . 1 and a

k k k ksequence hw j, w [ D(4 ) > dom f , such that

a k a k klim k iw 2 x*i 5 0, lim k i4 (w ) 2 q*(x*)i 5 0X 9
k→` k→`

a k kand lim k maxh f (w ) 2 f(x*), 0j 5 0.k→`
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REMARK 4. Of course, the conditions (2-viii), (2-ix) and especially (2-viii)9,
(2-ix)9 are not intended for a wide class of monotone operators, because real
possibilities to satisfy these conditions are connected with individual properties of 4
or mutual properties of 4 and f. The general way based on the Moreau–Yosida
regularization is very expensive (however, the use of this regularization in a special
algorithm of the APP in [5] seems to be promising). A couple of problems in
mathematical physics (the problem of linear elasticity with friction, Bingham’s

˜problem, etc.) takes the form of a variational inequality (P ) with a single-valued
operator 4, and a uniform approximation of f by a sequence of differentiable
functionals is possible (see [7, 8, 16, 17]. In this case, there are no serious
difficulties in satisfying (2-viii)9, (2-ix)9.

The extension of Theorems 1 and 2 to the methods developed for inclusion (1.1) can
be carried out using the relationship

0 [ C(x) ⇔ kC(x), y 2 xl > 0 ;y [ K ,

where K is an arbitrary convex closed set containing D(C).
For instance, method (1.5) applied to inclusion (1.1) can be rewritten in the form

1k11 k11 k k k11]find x [ X: 0 [ [x 2 x ] 1 C (x ) 1 C (x ) , (4.1)1 2e

and if C is a maximal monotone operator (that is usually supposed), then the2

operator

1k k k]C : x → (x 2 x ) 1 C (x ) 1 C (x) ,1 2e
kis maximal monotone, too, and D(C ) 5 D(C ). Hence, (4.1) is equivalent to2

k11find x [ K:
1k k11 k k11 k11]C (x ) 1 (x 2 x ) 1 C (x ), x 2 x > 0 ;x [ K , (4.2)K L1 2e

with K . D(C ) an arbitrary convex closed set, and (4.2) is a partial case of2

Problem (3.15) with

1 1k 2] ]^ 5 C , 4 5 C , + ; 0, x 5 , h : x → ixi .1 2 k e 2

Analogously, taking C 5 C 1 C , the auxiliary problem (1.7) may be rewritten in1 2

the form (3.15) with

1k11 k11 k ]^ 5 C , q [ C (x ), h with =h 5 J , + 5 J 1 C , x 5 ,1 2 1 2 1 k e

and K . D(C ) a convex closed set. Of course, the decomposition C 5 C 1 C has2 1 2

to be performed maintaining the conditions for ^ and 4 in Assumption 1.
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4.1. DECOMPOSITION

Due to the splitting of the main operator in (P) into a sum ^ 1 4, certain
kdecomposition properties are already inherent in the auxiliary problem (P ) as well

k11 kas in (3.15), where x is calculated with ^ fixed at the point x . Such a splitting
can be caused by several reasons, in particular:

• usually, applications of the APP in its traditional way assume that the operator
in the variational inequality is single-valued, whereas applying the proximal
methods the operator is supposed to be monotone, but not necessarily single-
valued (concerning relaxations of these conditions see [2] Sect. 3, [12, 25]).
The class of problems admitting the use of the PAP-method is wider, including
variational inequalities with an operator ^ 1 4, whose ‘geometrical’ properties
are defined by Assumptions (1-ii), (1-v);

k• for some variational inequalities, the problems (P ) or (3.15) can be solved
easier than the auxiliary problems arising in proximal methods. This fact was
the motivation for Lions–Mercier’s method (1.5) for Problem (1.1), although
the conditions assumed for the operator C in [13, 6] permit a straightforward
use of the proximal point method, too.

It is of special interest when, under an appropriate splitting of the operator, the
application of the PAP-method leads to a decomposition of the auxiliary problem in
the space X.

Let X be a Cartesian product of the Hilbert spaces X and X with their duals X91 2 1

and X9 , respectively. In the sequel, subscript i, i 5 1, 2, indicates that a point or a set2

belongs to X or that an operator acts from X into X9.i i i

Assume that K 5 K 3 K and the operator 4 possesses the following separability1 2

property:

k4(x), yl 5 k4 (x ), y l 1 k4 (x ), y l1 1 1 2 2 2

for x 5 (x , x ), y 5 ( y , y ). In this case, it is natural that the approximating1 2 1 2
koperators 4 (if an approximation of 4 is needed) have the same separability

k k kproperty. Then, choosing the auxiliary operators + : x → (+ (x ), + (x )) and the1 1 2 2
kfunction h(x) 5 h (x ) 1 h (x ), Problem (P ) can be decomposed into the pair of1 1 2 2

variational inequalities (i 5 1, 2):

k11find x [ K :i i

k k k11 k k11 k kk^ (x ) 1 4 (x ) 1 + (x ) 2 + (x )i i i i i i i i

k11 k k11
1 x (=h (x ) 2=h (x )), x 2 x l > 0 ;x [ K ,k i i i i i i i i

where ^ : X → X9 is the composition of ^ and the canonical projection onto X9.i i i
˜A related method for Problem (P ) with 4 ; 0 and ^ a monotone operator was

investigated in [14].
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nFor the variational inequality (P) with X 5 R , 4 5 0, K 5 K 3 K and ^ a1 2

monotone affine operator of a special structure, Tseng [26] developed a decomposi-
tion algorithm where at each step two minimization problems with separable,
strongly convex, quadratic functions and feasible sets K and K , respectively, have1 2

to be solved one after the other. This algorithm was derived (by means of an
appropriately chosen matrix $ ) from the asymmetric projection method, which can
be written as:

k11find x [ K:
k k11 k k11k^(x ) 1 $(x 2 x ), x 2 x l > 0 ;x [ K , (4.3)

with $ an n 3 n positive definite (non-symmetric) matrix. Obviously, the auxiliary
kvariational inequality (4.3) can be considered as a partial case of Problem (P ) with

k k 24 ; 0, x ; x, + 5 $ 2 x( and h(x) 5 (x /2)ixi . It is worth noting that thek

auxiliary operator corresponding to Tseng’s decomposition algorithm is not separ-
able, in general.

4.2. LINEAR APPROXIMATION METHODS

These methods have been studied extensively, mainly for finite-dimensional
problems (P) with 4 ; 0, and we refer to [18] and the bibliography therein. The

n n k k k koperator ^ : R → R is approximated at the point x by ^(x ) 1 !(x )(x 2 x ),
k k11where !(x ) is an n 3 n-matrix, and x [ K is defined by solving the variational

inequality
k k k11 k k11k^(x ) 1 !(x )(x 2 x ), x 2 x l > 0 ;x [ K . (4.4)

kDepending on the choice of !(x ) well-known methods can be obtained:

k k k k k T k1
]• the settings !(x ) 5=̂ (x ), !(x ) 5 [=̂ (x ) 1 =̂ (x ) ] or !(x ) is an2

kapproximation of =̂ (x ) correspond to the Newton, symmetrized Newton or
quasi Newton methods, respectively;

k k k k k k k• the cases !(x ) 5 +(x ) 1 (1 /v)$(x ) or !(x ) 5 8(x ) 1 (1 /v)$(x ) (+(x ),
k k8(x ) and $(x ) are strictly lower triangular, strictly upper triangular and

kdiagonal parts of =̂ (x ), respectively, and 0 , v , 2), correspond to SOR-
methods;

k• in case !(x ) 5 }, where } is a symmetric positive-definite matrix, a
projection method is designed, etc.

If there exists a symmetric positive definite matrix 6 such that !(x) 2 6 is positive
semi-definite for all x [ K, then Problem (4.4) can be transformed into the auxiliary

k k k kproblem (P ) of the PAP-method with 4 ; 0, + : x → (!(x ) 2 6 )x, h(x) 5
T1

]x 6x and x ; 1.k2
nFor the general variational inequality (P) with X 5 R , the methods considered

k kcan be extended using the same + , h and x and an appropriate approximation 4k
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kof 4 as in Assumption 2. Moreover, taking into account the mutual properties of 4
and h, the requirements for h may be weakened according to (2-ii), (2-iv), (2-v).

Of course, in both cases the choice of 6 has to satisfy Assumption (1-v).

4.3. ON THE USE OF WEAK REGULARIZATION

Weak regularization in proximal methods deals with a regularizing functional, being
not strongly convex on (X, i ? i), but strongly convex on X endowed by a weaker
norm than i ? i.

Taking into account the convergence results for the classical proximal point
method (see [23]), an application of weak regularization is justified if the mutual
properties of the operator of the variational inequality and the regularizing
functional provide weak convergence of the iterates in the space (X, i ? i). We
illustrate this approach using the well-known model of linear elasticity with friction

2(see [3], Sect. 3 and [17], Sect. 5). Let V , R be a bounded domain with a
Lipschitz-continuous boundary G, g [ L (G) be a given non-negative function`

(mes supp g . 0), a [ L (V) (k, l, p, m 5 1, 2) be given functions with symme-G klpm `

try property

a 5 a 5 a . (4.5)klpm lkpm pmkl

Moreover, it is supposed that there exists a positive constant c such that0

a (x)s s > c s s a.e. on V (4.6)klpm kl pm 0 kl kl

holds for all symmetric matrices [s ] (here and in the sequel we followkl k,l51,2

Einstein’s summation convention, i.e., the summation is performed over terms with
repeating indices).

1 2Let V5 [H (V)] and V 9 be the dual of V. We consider the variational inequality

find u [V : k!u 2 l, v 2 ul 1 j(v) 2 j(u) > 0 ;v [V , (4.7)

where l [V 9 is a given linear functional,

k!u, vl 5E a e (u)e (v) dV ,klpm kl pm
V

j(u) 5E guu u dG ,t
G

1
]with e (u) 5 (u /x 1 u /x ) (the component of the strain tensor) and u thekl k l l k t2

tangential (w.r.t. G) component of u.
The linear operator ! is not strongly (and even not strictly) monotone, its kernel

has the structure

hz 5 (z , z ) : z 5 a 2 bx , z 5 a 1 bx j1 2 1 1 2 2 2 1

with arbitrary a , a , b [ R. However, the second Korn inequality (see [17]) and1 2

(4.5), (4.6) ensure that there exists a positive constant c such that1
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2 2k!u, ul 1 iui > c iui ,2[L (V)] 1 V2

2and hence, taking h(u) 5 iui , the operator !u 1 =h(u) (with =h : V →V 9) is2[L (V)]2 1strongly monotone in V, although h is not strongly convex w.r.t. H -norm, but only
w.r.t. L -norm.2

The proximal method considered in [10] couples weak regularization with
successive discretization of the original problems (by means of the finite element
method on a sequence of subspaces hV j) and a successive approximation of thek

non-differential functional j. This reads as follows:
k11find u [V :
k11 k11 k k11k!u 2 l 1 x (=h(u ) 2=h(u )), v 2 u lk

k k k11
1 j (v) 2 j (u ) > 0 ;v [V ,

where

]]2
k E g u 1 r dG if u [VÏ t k k11j (u) 5 G5

1 ` otherwise

and r . 0, lim r 5 0.k k→` k

Obviously, this method is a special case of the PAP-method for a variational
k˜ ˜inequality in the form (P ) with auxiliary problems (P ), in which

k k k^ ; 0, 4 ; 4 : u → !u 2 l and f 5 j .
2 2One can show that, if a solution of (4.7) belongs to [H (V)] , then a suitable choice

of hV j and hr j permits to satisfy the modified Assumptions 1 and 2 at the beginningk k

of this section, moreover, (2-ix) can be guaranteed for any solution of (4.7).

Appendix

Proof of Lemma 2. In the sequel, we make use of the following inequalities, which
are valid for arbitrary a, b, x [ X, p [ X9 and e . 0:

1 e2 2] ]k p, al < i pi 1 iai , (A.1)X 92e 2

k@(a 2 b), a 2 bl
1 1 e
]]< (1 1 e)k@(a 2 x), a 2 xl 1 k@(b 2 x), b 2 xl . (A.2)

e

k11 k11 k k kIn order to estimate G (x*, x ) 2 G (x*, x ), where G is defined by (3.5), we
obtain from (3.6) that

k11 k11 k k k k11 k k
G (x*, x ) 2 G (x*, x ) < G (x*, x ) 2 G (x*, x ) .

The right-hand side of this inequality can be split up as follows:
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k k11 k k
G (x*, x ) 2 G (x*, x ) ; s 1 s 1 s 1 s ,1 2 3 4

with

k k11 k k11 ks 5 h(x ) 2 h(x ) 1 k=h(x ), x 2 x l ,1

1k k11 k k11 k11 k]s 5 k=h(x ) 2=h(x ), w 2 x l 1 h^(x*) 1 q*(x*), x 2 x l ,2 xk

k k11 ks 5 k=h(x ) 2=h(x ), x* 2 w l3

and

k11 k11 k k˜ ˜s 5 x k@(x 2 x*), x 2 x*l 2 x k@(x 2 x*), x 2 x*l . (A.3)4

kWe suppose that the sequence hw j satisfies (2-ix). In view of (2-ii), one gets

k11 k k11 ks < 2k&(x ) 2 &(x ), x 2 x l , (A.4)1

and (2-iii) and (A.1) yield

t 1k11 k 2 2 k 2] ]s < ix 2 x i 1 l ix* 2 w i , (A.5)3 h2 2t

with an arbitrary t . 0.
k kSetting x 5 w in Problem (P ), we obtain

1 k k k11 k k11]s < k^(x ) 1 4 (x ) 1 + (x )2 xk

1k k k k11 k11 k]2 (+ (x ), w 2 x l 1 k^(x*) 1 q*(x*), x 2 x l ,
xk

and due to (2-iv),

k k k k k11 k k k k11x s < k^(x ) 1 4 (w ) 1 + (x ) 2 + (x ), w 2 x lk 2

k k11 k k11 k11 k
2 k@(w 2 x ), w 2 x l 1 k^(x*) 1 q*(x*), x 2 x l

k k11 k k11 k k
5 2k@(w 2 x ), w 2 x l 1 k^(x ) 1 q*(x*), x* 2 x l

k k k11 k k k11
1 k4 (w ) 2 q*(x*), x* 2 x l 1 k^(x ) 1 q*(x*), x 2 x l

k k k k
1 k4 (w ) 2 q*(x*), w 2 x*l 1 kq*(x*), w 2 x*l

k k k k11 k k k k11
1 k^(x ), w 2 x*l 1 k+ (x ) 2 + (x ), w 2 x l

k11 k
1 k^(x*) 1 q*(x*), x 2 x l .

But, by definition of x*, q*(x*),

kk^(x*) 1 q*(x*), x 2 x*l > 0 ,

and with (1-v) one can continue:
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k k11 k k11x s < 2k@(w 2 x ), w 2 x lk 2

k k k k 2
2 g i^(x ) 2 + (x ) 2 ^(x*) 1 + (x*)iX 9

k k k11 k k k
1 k4 (w ) 2 q*(x*), x* 2 x l 1 k4 (w ) 2 q*(x*), w 2 x*l

k k k
1 kq*(x*), w 2 x*l 1 k^(x ), w 2 x*l

k k11 k k k k11 k k k k
1 k+ (x ) 2 + (x ), w 2 x l 1 k+ (x*) 2 + (x ), x 2 x*l

k k k11
1 k^(x ) 2 ^(x*), x 2 x l

k k k k 2
5 2 g i^(x ) 2 + (x ) 2 ^(x*) 1 + (x*)iX 9

k k11 k k11
2 k@(w 2 x ), w 2 x l

k k k k k k11
1 k^(x ) 2 + (x ) 2 ^(x*) 1 + (x*), x 2 x l

k k k k k
1 k^(x ) 2 + (x ) 2 ^(x*) 1 + (x*), w 2 x*l

k k k11 k11 k
1 k+ (x*) 2 + (x ), x 2 w l

k k k k11
1 k^(x*) 1 q*(x*), w 2 x*l 1 k4 (w ) 2 q*(x*), x* 2 x l

k k k
1 k4 (w ) 2 q*(x*), w 2 x*l . (A.6)

kDue to the monotonicity of + ,

k k k11 k11 k k k11 k kk+ (x*) 2 + (x ), x 2 w l < k+ (x l 2 + (x*), w 2 x*l

is valid, and using the inequalities (A.1), (A.2) together with (2-i) in order to
k k11 k kestimate the right-hand side of (A.6) as well as the term k+ (x ) 2 + (x*), w 2

x*l, we obtain

m 1h 2 2g k k k k 2]]]]x s < i^(x ) 2 + (x ) 2 ^(x*) 1 + (x*)ik 2 X 92
1 1k k11 2 k 2] ]1 ix 2 x i 1 iw 2 x*i2m 2h

1 1k11 k11 k k]] ]2 k@(x 2 x*), x 2 x*l 1 k@(w 2 x*), w 2 x*l1 1 e e

l+k k 2]1 i^(x*) 1 q*(x*)i iw 2 x*i 1 iw 2 x*iX 9 uk

u1 kk11 2 k k 2]] ]1 l u ix 2 x*i 1 1 i4 (w ) 2 q*(x*)i (A.7)S D+ k X 92l u 2l+ k +

with arbitrary positive m, h, u and e.k

Choosing

1 1 1
]] ]] ]]e 5 2 1, m [ , 2g , t 5 m 2 , (A.8)] S D˜ 2xm 2xm2xx

] ]

one can conclude from (2-v), (2-vi), (3.7) and (A.2) that
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1 1 k11 k11 k k˜ ˜]]]x 2 k@(x 2 x*), x 2 x*l 2 x k@(x 2 x*), x 2 x*lS Dx 1 1 ek

1 tk11 k k11 k k11 k 2]] ]2 k&(x ) 2 &(x ), x 2 x l 1 1 ix 2 x iS D2x m 2k

k11 k11 k k˜< 2x [k@(x 2 x*), x 2 x*l 1 k@(x 2 x*), x 2 x*l]
1 m 1k11 k k11 k k11 k 2]] ] ]]2 k&(x ) 2 &(x ), x 2 x l 1 1 2 ix 2 x iS D2x m 2 4xmk ]

x̃ K11 k k11 k k11 k k11 k]< 2 k@(x 2 x ), x 2 x l 2 k&(x ) 2 &(x ), x 2 x l2
m 1 m 1k11 k 2 k11 k 2] ]] ] ]]1 1 ix 2 x i < 2 1 ix 2 x i , (A.9)S D S D2 4xm 2 4xm

] ]

and that 2m /2 1 1/4xm , 0. Now, we sum up the estimates for s , s , s in (A.4),1 2 3]
(A.5), (A.7) with (A.3), and insert (A.8), (A.9) in this sum. This yields

m 1k11 k11 k k k11 k 2] ]]G (x*, x ) 2 G (x*, x ) < 2 1 ix 2 x iS D2 4xm
]

1 m 1h 2 2g k k k k 2]]]]]1 i^(x ) 2 + (x ) 2 ^(x*) 1 + (x*)iX 9x 2k

2l l1 1 + h k 2 k11 2] ] ] ]1 1 1 ix* 2 w i 1 l u ix 2 x*iFS D + kx 2h u 2tk k

u1 k k k 2]] ]1 1 i4 (w ) 2 q*(x*)iS D X 92l u 2l+ k +

1 k k]1 k@(w 2 x*), w 2 x*l
e

k G1 i^(x*) 1 q*(x*)i iw 2 x*i . (A.10)X 9

But, from the first inequality in (3.6) one gets

1k11 2 k11 k11]ix 2 x*i < G (x*, x )m

and (A.10) leads to

l u+ k k11 k11]]1 2 G (x*, x )S Dxm
]

2l l1 1 + hk k k 2] ] ] ]< G (x*, x ) 1 1 1 iw 2 x*iFS Dx 2h u 2tk]
u1 k k k 2]] ]1 1 i4 (w ) 2 q*(x*)iS D X 92l u 2l+ k +
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1 k k k] ]G1 k@(w 2 x*), w 2 x*l 1 i^(x*) 1 q*(x*)i iw 2 x*iX 9e

m 1 k11 k 2] ]]1 2 1 ix 2 x i . (A.11)S D2 4xm
]

2a 21Setting u 5uk for k . 0, where u [ (0, xml ) and a . 1 is the same as ink +]
(2-ix), we obtain with c 5 l u /xm:+ ]

1k11 k11 k k]]]G (x*, x ) < G (x*, x )2a1 2 ck
2l l1 1 + ha k 2]]] ] ] ]1 1 k 1 iw 2 x*iFS D2h u 2tx(1 2 c )0]

ak u k k 2]] ]1 1 i4 (w ) 2 q*(x*)iS D X 92l u 2l+ +

1 k k k] G1 k@(w 2 x*), w 2 x*l 1 i^(x*) 1 q*(x*)i iw 2 x*iX 9e

m 1 k11 k 2] ]]1 2 1 ix 2 x i , k 5 1, 2, . . . (A.12)S D2 4xm
]

Now, in view of
`c1 1 m 10]]] ]]] ]]] ] ]], 1 1 , O , `, 2 1 , 02a a a 2 4xm1 2 c k k 2 c k 2 ck510 0 0 ]

k kand Assumption (2-ix), the convergence of the sequence hG (x*, x )j follows from
Lemma 2.2.2 in [20], and the first inequality in (3.6) ensures the boundedness of the

ksequence hx j. Passing to the limit in (A.12), one can immediately conclude that
k11 klim ix 2 x i 5 0. hk→`
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